## Solution #027 - pile of coconuts

268

This post contains my proposed solution to Problem #027 - pile of coconuts. Please do not read this solution before making a serious attempt at the problem.

### Solution

The problem of determining the amount of coconuts that the sailors gathered can be tackled with a bit of modular arithmetics.

Let us say that after all sailors fiddled with the pile, there were $$x$$ coconuts left. We will use $$x$$ to write an expression for the number of coconuts originally available, and then we solve for $$x$$.

Recall that the fifth sailor gave a coconut to the monkey and took a fifth of the coconuts available, leaving the pile with exactly $$x$$ coconuts. So, when the fifth sailor got to the pile, the pile had exactly these many coconuts:

$\frac54 x + 1 ~ .$

Repeating the process of multiplying by $$\frac54$$ and adding $$1$$, we see that the pile had

$\frac54\left(\frac54 x + 1\right) + 1 = \frac{25}{16}x + \frac94$

coconuts when the fourth sailor got to the pile, which means that when the third sailor got to the pile, it had

$\frac54\left(\frac{25}{16}x + \frac94 \right) + 1 = \frac{125}{64}x + \frac{61}{16}$

coconuts. Repeating this process two more times, we see the pile had

$\frac54\left(\frac{125}{64}x + \frac{61}{16}\right) + 1 = \frac{625}{256}x + \frac{369}{64}$

coconuts the moment the second sailor got to the pile and exactly

$\frac54\left(\frac{625}{256}x + \frac{369}{64}\right) + 1 = \frac{3125}{1024}x + \frac{2101}{256}$

when the first sailor got there, i.e. the initial amount of coconuts in the pile is

$\frac{3125}{1024}x + \frac{2101}{256} = \frac{3125x + 8404}{1024} ~ .$

From the problem statement, we know that the initial number of coconuts is a whole number (that is, the sailors collected a whole number of coconuts). This means that $$3125x + 8404$$ must be a multiple of $$1024$$, so that the fraction above evaluates to an integer. In mathematical notation, that is written as

$3125x + 8404 \equiv 0 \mod 1024 ~ .$

Now, notice that $$3125 = 53 + 3\times 1024$$ and $$8404 = 212 + 8\times 1024$$. We can replace these two equalities in the expression $$3125x + 8404$$ to obtain

$53x + 3\times 1024x + 212 + 8\times 1024 ~ ,$

which is a number that should be a multiple of $$1024$$. Obviously, the terms that are being multiplied by $$1024$$ are already multiples of $$1024$$, so we just need $$53x + 212$$ to be a multiple of $$1024$$. In mathematical notation, we write the intermediate step as

$3125x + 8404 \equiv 53x + 212 \mod 1024 ~ .$

This means we now have a simpler equation to solve:

$53x + 212 \equiv 0 \mod 1024$

Another thing we can do to simplify this equation is notice that $$53x + 212 = 53(x + 4)$$. We need $$53(x + 4)$$ to be a multiple of $$1024 = 2^{10}$$, that is, we need $$53(x + 4)$$ to be divisible by $$2$$ ten times. However, the number $$53$$ is not divisible by $$2$$ (not even once!) so it is the factor $$x + 4$$ in $$53(x + 4)$$ that has to be divisible by $$2$$ ten times.

Now that we know that $$x + 4$$ is a multiple of $$2^{10} = 1024$$, and remembering that $$x$$ was the number of coconuts in the final pile (so that $$x > 0$$), we have that $$x + 4$$ must be in the following list:

$1024, 2048, 3072, 4096, \cdots$

or, in other words, $$x$$ must be in the list

$1020, 2044, 3068, 4092, \cdots$

The problem statement asked for the minimum number of coconuts, so we have to pick the smallest value in the list, which is $$x = 1020$$. If $$x = 1020$$, then the initial number of coconuts in the pile was

$\frac{3125\times 1020 + 8404}{1024} = 3121 ~ _\blacksquare$

Therefore, $$3121$$ is the answer to the coconut problem.

This problem had a solution with more calculations than the usual problems I post in this blog. What did you make of it? Do you prefer problems with more or with less calculations? Let me know in the comment section below.

If you have any questions about my solution, found an error (woops!) or want to share your solution, please leave a comment below! Otherwise just leave an “upvote” reaction!

Also, don't forget to subscribe to the newsletter to get bi-weekly problems sent straight to your inbox!

If you liked this article and would like to support the mathspp project, then you may want to buy me a slice of pizza 🍕.

Blog Comments powered by Disqus.