This blog has a really interesting assortment of articles on mathematics and programming. You can use the tags to your right to find topics that interest you, or you may want to have a look at

- my Python articles about the core language; or
- the problems I wrote to get your brain working.

You should also subscribe to the blog newsletter.

Can you prove that there are arbitrarily many primes in arbitrarily big intervals?

In this problem you have to devise a strategy to beat the computer in a "guess the polynomial" game.

Let's prove that if \(k\) is an integer, then \(\gcd(k, k+1) = 1\). That is, any two consecutive integers are coprime.

This simple problem is an example of a very interesting phenomenon: if you have a large enough "universe" to consider, even randomly picked parts exhibit structured properties.

Can you measure exactly \(2\)L of water with two plain buckets with volumes of \(14\)L and \(5\)L? Of course you can!

Two friends were bored and decided to play a game... a mathematical game with a paper bag!

Here's how I like to solve my equations: just walk around randomly until I trip over a solution!